
Public

SMART CONTRACT AUDIT REPORT

for

FBS$ Token

Prepared By: Xiaomi Huang

PeckShield

June 27, 2025

1/18 PeckShield Audit Report #: 2025-124

contact@peckshield.com

Public

Document Properties

Client FBS$ Token

Title Smart Contract Audit Report
Target FBS$ Token

Version 1.0
Author Patrick Lou
Auditors Patrick Lou, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author Description
1.0 June 27, 2025 Patrick Lou Final Release

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/18 PeckShield Audit Report #: 2025-124

Public

Contents

1 Introduction 4
1.1 About FBS$ Token . 4

1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 8
2.1 Summary . 8
2.2 Key Findings . 9

3 ERC20 Compliance Checks 10

4 Detailed Results 13
4.1 Revisited Logic of addNewYearForInflationaryModel() 13
4.2 Trust Issue of Admin Keys . 14

5 Conclusion 17

References 18

3/18 PeckShield Audit Report #: 2025-124

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the FBS$ token

contract, we outline in the report our systematic method to evaluate potential security issues in the
smart contract implementation, expose possible semantic inconsistency between smart contract code
and the documentation, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of the smart contract can be further improved due to the
presence of certain issues related to ERC20-compliance, security, or performance. This document
outlines our audit results.

1.1 About FBS$ Token

FBS$ Token is an ERC20 compliant token which is mintable, burnable and pausable. It includes a 10-year

period specification of the inflationary model per year with a max allowable tokens to mint within
a year. The max supply of the token can be changed after 10 years. The basic information of the
audited FBS$ contract is as follows:

Table 1.1: Basic Information of FBS$ Token

Item Description
Name FBS$ Token
Type ERC20 Token Contract

Platform Solidity
Audit Method Whitebox

Audit Completion Date June 27, 2025

4/18 PeckShield Audit Report #: 2025-124

Public

1.2 About PeckShield

PeckShield Inc. [6] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of current blockchain ecosystem by offering top-notch, industry-leading ser-
vices and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [5]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk;

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

We perform the audit according to the following procedures:

5/18 PeckShield Audit Report #: 2025-124

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• ERC20 Compliance Checks: We then manually check whether the implementation logic of the
audited smart contract(s) follows the standard ERC20 specification and other best practices.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead of Transfer

Costly Loop
(Unsafe) Use of Untrusted Libraries
(Unsafe) Use of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Approve / TransferFrom Race Condition

ERC20 Compliance Checks Compliance Checks (Section 3)

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

To evaluate the risk, we go through a list of check items and each would be labeled with a severity
category. For one check item, if our tool does not identify any issue, the contract is considered safe

6/18 PeckShield Audit Report #: 2025-124

Public

regarding the check item. For any discovered issue, we might further deploy contracts on our private
testnet and run tests to confirm the findings. If necessary, we would additionally build a PoC to
demonstrate the possibility of exploitation. The concrete list of check items is shown in Table 1.3.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/18 PeckShield Audit Report #: 2025-124

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the FBS$ token contract. During the first phase of

our audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logics, examine
system operations, and place ERC20-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 1

Informational 0

Total 2

Moreover, we explicitly evaluate whether the given contracts follow the standard ERC20 specifi-
cation and other known best practices, and validate its compatibility with other similar ERC20 tokens
and current DeFi protocols. The detailed ERC20 compliance checks are reported in Section 3. After
that, we examine any identified issue(s) of varying severities that need to be brought up and paid
more attention to. (The findings are categorized in the above table.) Additional information can be
found in the next subsection, and the detailed discussions of each of them are in Section 4.

8/18 PeckShield Audit Report #: 2025-124

Public

2.2 Key Findings

Overall, no ERC20 compliance issue was found, and our detailed checklist can be found in Section
3. However, the smart contract implementation can be improved because of the existence of 1
low-severity vulnerability and 1 informational suggestion.

Table 2.1: Key FBS$ Token Audit Findings

ID Severity Title Category Status
PVE-001 Low Revisited Logic of addNewYearForIn-

flationaryModel()
Coding Practices Fixed

PVE-002 Medium Trust Issue Of Admin Keys Security Features Mitigated

Please refer to Section 3 for our detailed compliance checks and Section 4 for elaboration of
reported issues.

9/18 PeckShield Audit Report #: 2025-124

Public

3 | ERC20 Compliance Checks

The ERC20 specification defines a list of API functions (and relevant events) that each token contract
is expected to implement (and emit). The failure to meet these requirements means the token
contract cannot be considered to be ERC20-compliant. Naturally, as the first step of our audit, we
examine the list of API functions defined by the ERC20 specification and validate whether there
exist any inconsistency or incompatibility in the implementation or the inherent business logic of the
audited contract(s).

Table 3.1: Basic View-Only Functions Defined in The ERC20 Specification

Item Description Status

name() Is declared as a public view function ✓

Returns a string, for example “Tether USD” ✓

symbol() Is declared as a public view function ✓

Returns the symbol by which the token contract should be known, for
example “USDT”. It is usually 3 or 4 characters in length

✓

decimals() Is declared as a public view function ✓

Returns decimals, which refers to how divisible a token can be, from 0
(not at all divisible) to 18 (pretty much continuous) and even higher if
required

✓

totalSupply() Is declared as a public view function ✓

Returns the number of total supplied tokens, including the total minted
tokens (minus the total burned tokens) ever since the deployment

✓

balanceOf() Is declared as a public view function ✓

Anyone can query any address’ balance, as all data on the blockchain is
public

✓

allowance() Is declared as a public view function ✓

Returns the amount which the spender is still allowed to withdraw from
the owner

✓

Our analysis shows that there is an ERC20 inconsistency or incompatibility issue found in the
audited token contracts. Specifically, zero amount transfers are not allowed and related events are
not fired. In the surrounding two tables, we outline the respective list of basic view-only functions

10/18 PeckShield Audit Report #: 2025-124

Public

Table 3.2: Key State-Changing Functions Defined in The ERC20 Specification

Item Description Status

transfer()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the caller does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring to zero address ✓

transferFrom()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the spender does not have enough token allowances to spend ✓

Updates the spender’s token allowances when tokens are transferred suc-
cessfully

✓

Reverts if the from address does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring from zero address ✓

Reverts while transferring to zero address ✓

approve()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token approval status ✓

Emits Approval() event when tokens are approved successfully ✓

Reverts while approving to zero address ✓

Transfer() event
Is emitted when tokens are transferred, including zero value transfers ✓

Is emitted with the from address set to address(0x0) when new tokens
are generated

✓

Approval() event Is emitted on any successful call to approve() ✓

11/18 PeckShield Audit Report #: 2025-124

Public

(Table 3.1) and key state-changing functions (Table 3.2) according to the widely-adopted ERC20
specification. In addition, we perform a further examination on certain features that are permitted by
the ERC20 specification or even further extended in follow-up refinements and enhancements (e.g.,
ERC777/ERC2222), but not required for implementation. These features are generally helpful, but
may also impact or bring certain incompatibility with current DeFi protocols. Therefore, we consider
it is important to highlight them as well. This list is shown in Table 3.3.

Table 3.3: Additional Opt-in Features Examined in Our Audit

Feature Description Opt-in
Deflationary Part of the tokens are burned or transferred as fee while on trans-

fer()/transferFrom() calls
—

Rebasing The balanceOf() function returns a re-based balance instead of the actual
stored amount of tokens owned by the specific address

—

Pausable The token contract allows the owner or privileged users to pause the token
transfers and other operations

✓

Blacklistable The token contract allows the owner or privileged users to blacklist a
specific address such that token transfers and other operations related to
that address are prohibited

—

Mintable The token contract allows the owner or privileged users to mint tokens to
a specific address

✓

Burnable The token contract allows the owner or privileged users to burn tokens of
a specific address

✓

12/18 PeckShield Audit Report #: 2025-124

Public

4 | Detailed Results

4.1 Revisited Logic of addNewYearForInflationaryModel()

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: FBS$

• Category: Coding Practices [4]

• CWE subcategory: CWE-1126 [1]

Description

The FBS$ token includes a 10-year period specification of the inflationary model per year with a max

allowable tokens to mint within a year. The max supply of the token can be changed after 10 years
and the admin can set the inflationary model for each year with the addNewYearForInflationaryModel()

routine. While examining its logic, we observe the logic need to be improved. To illustrate, we show
below the addNewYearForInflationaryModel() routine.

The inflationaryModelTotalYears is initialized to 10 in the constructor and used as the key for the
inflationaryModelPerYear mapping state variable, It will be set to 11 (line 137, 139) when this routine
is first called after 10 years which indicates the inflation model data for 11th year is stored under key
11. However, this may not be true if this routine does not get called in 11th year. In particular, the
inflationaryModelTotalYears may still be 11 when it was first called in subsequent years that come
after year 11. The key should reference the current year according to the design and in this case, the
data stored will be inconsistent with the current year, resulting in an incorrect calculation.

121 function addNewYearForInflationaryModel(uint256 maxMintAmount) external {
122 uint256 currentYear = getCurrentYear ();
123 require(
124 currentYear > 10,
125 "FBS$: cannot add new inflationary model before 10-year period"
126);
127 require(
128 hasRole(DEFAULT_ADMIN_ROLE , _msgSender ()),
129 "FBS$: must have admin role to set the inflationary model"

13/18 PeckShield Audit Report #: 2025-124

Public

130);
131 require(maxMintAmount > 0, "FBS$: maxMintAmount must be positive");
132 require(
133 (ERC20.totalSupply () + (maxMintAmount * E18)) <= MAX_SUPPLY ,
134 "FBS$: maxMintAmount invalid as max supply exceeded"
135);
136
137 inflationaryModelTotalYears ++;
138
139 inflationaryModelPerYear[inflationaryModelTotalYears] = YearlyMintInfo(
140 maxMintAmount ,
141 0,
142 maxMintAmount
143);
144
145 emit EvtAddNewYearForInflationaryModel(
146 inflationaryModelTotalYears ,
147 maxMintAmount
148);
149 }

Listing 4.1: FBS$::addNewYearForInflationaryModel()

Recommendation Revisit the logic for addNewYearForInflationaryModel() to handle this case
properly.

Status This issue has been fixed in this commit: 4aaa44b.

4.2 Trust Issue of Admin Keys

• ID: PVE-002

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: FBS$

• Category: Security Features [3]

• CWE subcategory: CWE-287 [2]

Description

In the FBS$ token protocol, there are special administrative accounts, i.e., DEFAULT_ADMIN, MINTER and

PAUSER. Those privileged accounts play critical roles in governing and regulating the protocol-wide
operations (e.g., system parameters configuration, mint new tokens, pause the protocol). It also has
the privilege to control or govern the flow of assets managed by this protocol. Our analysis shows
that the privileged accounts need to be scrutinized. In the following, we examine the privileged
DEFAULT_ADMIN_ROLE account and its related privileged accesses in current contract.

14/18 PeckShield Audit Report #: 2025-124

https://github.com/AVA-Foundation/ava-token-swap/blob/master/contracts/AVA.sol

Public

To elaborate, we show one of the related routine from the FBS$ token contract. The routine allows

the DEFAULT_ADMIN_ROLE account to set the inflationary model (line 86-89).
82 function updateInflationaryModelPerYear(
83 uint256 yearID ,
84 uint256 maxMintAmount
85) external {
86 require(
87 hasRole(DEFAULT_ADMIN_ROLE , _msgSender ()),
88 "FBS$: must have admin role to set the inflationary model"
89);
90 require(yearID > 0, "FBS$: yearID must be positive");
91 uint256 currentYear = getCurrentYear ();
92 require(
93 yearID >= currentYear ,
94 "FBS$: yearID must be from current year afterwards"
95);
96
97 require(maxMintAmount > 0, "FBS$: maxMintAmount must be positive");
98 require(
99 (ERC20.totalSupply () + (maxMintAmount * E18)) <= MAX_SUPPLY ,

100 "FBS$: maxMintAmount invalid as max supply exceeded"
101);
102
103 require(
104 inflationaryModelPerYear[yearID]. maxMintAmount > 0,
105 "FBS$: inflationary model for the given year not exist"
106);
107
108 require(
109 maxMintAmount >= inflationaryModelPerYear[yearID]. currentMintAmount ,
110 "FBS$: maxMintAmount invalid as smaller than currentMintAmount"
111);
112 inflationaryModelPerYear[yearID]. maxMintAmount = maxMintAmount;
113 inflationaryModelPerYear[yearID]. remainingMintAmount =
114 maxMintAmount -
115 inflationaryModelPerYear[yearID]. currentMintAmount;
116
117 emit EvtUpdateInflationaryModelPerYear(yearID , maxMintAmount);
118 }

Listing 4.2: FBS$ Token Contract

We understand the need of the privileged functions for contract maintenance, but it is worrisome
if the privileged accounts are plain EOA account. Note that a multi-sig account could greatly alleviate
this concern, though it is still far from perfect. Specifically, a better approach is to eliminate the
administration key concern by transferring the role to a community-governed DAO.

Recommendation Promptly transfer the privileged accounts to the intended DAO-like gov-
ernance contract. All changed to privileged operations may need to be mediated with necessary
timelocks. Eventually, activate the normal on-chain community-based governance life-cycle and en-

15/18 PeckShield Audit Report #: 2025-124

Public

sure the intended trustless nature and high-quality distributed governance.

Status This issue has been mitigated. The team confirms that the related privileged accounts
will be assigned to multi-sig contract.

16/18 PeckShield Audit Report #: 2025-124

Public

5 | Conclusion

In this security audit, we have examined the design and implementation of the FBS$ token contract.

During our audit, we first checked all respects related to the compatibility of the ERC20 specification
and other known ERC20 pitfalls/vulnerabilities. We then proceeded to examine other areas such as
coding practices and business logics. Overall, although no critical or high level vulnerabilities were
discovered, we identified one informational suggestion and one low-severity issue. In the meantime,
as disclaimed in Section 1.4, we appreciate any constructive feedbacks or suggestions about our
findings, procedures, audit scope, etc.

17/18 PeckShield Audit Report #: 2025-124

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[4] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[5] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[6] PeckShield. PeckShield Inc. https://www.peckshield.com.

18/18 PeckShield Audit Report #: 2025-124

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About AVA Token
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	ERC20 Compliance Checks
	Detailed Results
	Revisited Logic of addNewYearForInflationaryModel()
	Trust Issue of Admin Keys

	Conclusion
	References

